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Abstract 

Mechlorethamine (HN2), a nitrogen derivative of mustard gas, was the first synthetic 

anti-tumor chemotherapeutic because it forms covalent cross-links between strands of duplex 

DNA. HN2 represents a class of bifunctional alkylating agents that are both chemotherapeutic 

and carcinogenic: diepoxybutane (DEB), the active form of the pro-drug treosulfan, and 

epichlorohydrin (ECH), a structural hybrid of HN2 and DEB, also form covalent cross-links 

between DNA. While HN2 and DEB are clinically used as anti-tumor chemotherapeutics, ECH 

is a structural hybrid of these two compounds not used in a clinical setting. Accordingly, we 

aimed to understand the relationship between the cross-linking potential of these compounds and 

their ability to induce cell death (apoptosis). Cytotoxicity rankings were determined by assessing 

the median lethal dose (LD50) concentrations using MTT Cell Proliferation Assays for 12- and 

24-h treatments (HN2 >> DEB > ECH; DEB > HN2 > ECH, respectively). Cross-linking 

potentials at equimolar concentrations suggest DEB > ECH > HN2 for a 24-h treatment. Finally, 

these compounds’ abilities to induce apoptosis at 12- and 24-h equitoxic concentrations were 

assayed over 12- and 24-h treatments, suggesting that DEB >> ECH > HN2. Accordingly, we 

propose a relationship between a compound’s ability to form cross-links and the induction of cell 

death and apoptosis (DEB > ECH > HN2) when considering reactivity and stability of unreacted 

cross-linkers over time. Future studies will aim to elucidate the cross-linking potential at 

equitoxic concentrations for each of these three compounds over multiple time frames. 
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Introduction 

DNA Alkylating Agents: Importance, Mechanism, and Cross-Linking 

The cytotoxic effects of mustard gas were realized during World War I in its deployment 

as a chemical weapon against Allied forces. Autopsies of exposed soldiers revealed its ability to 

severely deplete bone marrow, raising the possibility for its use as an anti-tumor agent to treat 

Hodgkin’s leukemia [1]. The water-soluble nitrogen derivative, mechlorethamine hydrochloride 

(HN2, Table 1) was later used as a chemotherapeutic in patients with leukemia and shown to 

decrease tumor size and delay death [2]. HN2 ultimately revolutionized the war on cancer as it 

became the first synthetic anti-tumor chemotherapeutic used clinically, suggesting the possible 

use of bifunctional alkylating agents as anti-tumor chemotherapeutics [1,3].  

Bifunctional alkylating 

agents are compounds that use two 

functional groups (e.g. chloride or 

epoxide) to alkylate and form 

covalent, interstrand cross-links in 

duplex DNA. These cross-links 

prevent double stranded DNA (dsDNA) from separating, making transcription and replication 

nearly impossible without specific repair enzymes. Accordingly, the formation of these cross-

links is believed to be the source of the cytotoxicity of HN2 and other bifunctional alkylating 

agents [4]. 

The ability of HN2 to induce DNA damage has been harnessed in the drug Mustargen
®

, 

which is currently used topically to treat melanomas. These cross-links are primarily formed 

between the N7 sites of distal guanosine residues in the sequence 5!-GNC [4]. Unfortunately, in 

Table 1. Bifunctional alkylating agents used in this study. 

Name Abbreviation Structure 

Mechlorethamine 

 

HN2 

 
1,2,3,4-

Diepoxybutane 

 

DEB 

 
(±)-Epichlorohydrin 

 

ECH 

 

Cl

N

Cl

CH3

OO

ClO
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addition to stopping cell proliferation, HN2 has the potential to cause insertions, rearrangements, 

and point mutations within the DNA of cancerous and healthy cells alike [5]. As a result, 

treatment has the potential to lead to an increased risk of developing secondary cancers [6,7].  

Another bifunctional alkylating agent used to treat cancer is 1,2,3,4-diepoxybutane (DEB, 

Table 1). DEB is believed to be the active form of the anti-tumor pro-drug treosulfan (Ovastat), 

which has been used to treat advanced ovarian cancers [8,9]. Cross-linking DNA similarly to 

HN2 [10], DEB exerts cytotoxic effects that are also non-specific to cancer cells. DEB’s 

carcinogenicity has been observed in mice and rats [11,12], as well as in humans [13]. A link 

between industrial workers exposed to 1,3-butadiene (BD), the metabolic precursor to DEB, and 

a high occurrence of leukemia has been documented [14-18], raising concerns about its dual 

chemotherapeutic and carcinogenic nature. Its ubiquitous presence in gasoline, automobile 

exhaust, and cigarette smoke (~20-75 µg/cigarette) are enough to cause cross-linking and induce 

apoptosis [19], making its exposure to civilian populations especially alarming. A cause for 

further concern is the approximately four million pounds of BD released from the production of 

synthetic rubber, polymers, and plastics from US facilities each year [20]. This staggering figure 

highlights the need to study DEB and its ability to cross-link and induce cell death [21,22] more 

in depth.  

While not currently used as an anti-tumor chemotherapeutic, epichlorohydrin (ECH, 

Table 1) is a structural hybrid of HN2 and DEB. ECH has also been identified as a suspected 

mutagen and probable carcinogen [23]. In 2003, approximately 203,900 metric tons of ECH 

were used in the production of synthetic polymers, epoxy resins, glycerine, and elastomers [24]. 

ECH forms cross-links similar to HN2 and is also capable of reacting with free bases at the N
6
 

and N
3
 of adenine and O

6
 on guanine [25-29]. It has been hypothesized that the 3-atom cross-link 
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formed by ECH would be too small to cross-link duplex DNA [30]; however, in vitro studies 

performed by our lab [31] and in vivo studies on mammalian cell cultures counter this hypothesis 

[32-35]. Further, in mammalian cell cultures, ECH has been shown to be mutagenic [36], 

clastogenic [37], and able to induce neoplastic cell transformations [23], papillomas, and 

carcinomas [38]. Due to cross-link formation, chromosomal aberrations, and cell damage, the 

risk of developing cancer greatly increases upon exposure to ECH [23,24,39,40]. Each year, an 

estimated 250,000 industrial workers in the United States will contact ECH, potentially raising 

their risk of cancer. Therefore, understanding ECH’s cross-linking potential and cytotoxicity are 

important for furthering our understanding of this compound’s health risks.  

 

Characterizing the relationship between cross-linking and cytotoxicity for these compounds 

The purpose of this study is to understand the abilities of the three compounds (HN2, 

DEB and ECH) to form interstrand cross-links within double stranded DNA in vivo and how the 

formation of cross-links relates to cytotoxicity and the induction of apoptosis (Figure 1). We 

determined the median lethal dose (LD50) as a measure of cytotoxicity after 12- and 24-h 

treatments using the MTT Cell Proliferation assay. The potential for each compound to form 

interstrand cross-links at equimolar concentrations over 24-h was investigated using an ethidium 

bromide fluorescence assay. Finally, the apoptotic potential of these compounds was determined 

by the detection of two hallmark apoptotic proteins, active caspases 3 and 7, using a Caspase-

Glo
®

 3/7 assay. Accordingly, these three tests suggest a relationship between the ability of these 

compounds to form cross-links and their abilities to induce cell death and trigger an apoptotic 

response.  
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Figure 1. Schematic of overview this study. HL-60 cells were treated with DEB, ECH, and HN2 for 12- or 24-h. 

Cross-linking potentials were determined using an ethidium bromide fluorescence assay, which was compared to the 

cytotoxicity as measured through the MTT Cell Proliferation Assay and compounds’ ability to trigger an apoptotic 

response as detected by the Caspase-Glo
®

 3/7 assay. 
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Materials And Methods 

Cell Lines and Cell Culture 

Human acute myeloid leukemia (HL-60) cells (American Type Culture Collection) were 

cultured in RPMI 1640 (Lonza) containing 10% fetal bovine serum (FBS; Carolina Biologicals) 

and broad spectrum antibiotics (10,000 I.U./mL Pennicillin and 10,000 µg/mL Streptomycin; 

Cellgrow) at 37
o
C, in 5% CO2. Stocks were maintained at approximately 3.0 - 4.0 x 10

5
 cells/mL. 

Stock viability and density were measured using 2.0 µL Trypan Blue 0.4% stain (Lonza) and 

20.0 µL cell suspension. After brief mixing, 20 µL were injected into SD100 Cellometer cell 

counting chambers and counted using a Cellometer T4 Nexelcom, automated haemocytometer 

with the accompanying Cellometer Auto T4 Software. The concentration and viability of each 

stock were determined using the HL-60 cell type setting. 

 

Drug Treatments 

Stocks of each bifunctional alkylating agent (1.0 M) were prepared for each trial in either 

DMSO (DEB and ECH) or 0.1 N HCl (HN2). Treatments were administered such that wells 

contained 1% v/v alkylating agent in vehicle solution. Cells were aliquoted into 6-well plates to 

maximize surface area exposure at a concentration of 3.0-4.0 x 10
5
 cells/mL. Cells were treated 

continuously in growth media containing various concentrations of a bifunctional alkylating 

agent and assayed after 12 or 24 hours. Treated cells were compared relative to a number of 

controls: negative controls containing cell-free RPMI 1640 media, and a vehicle control with 

either 1% v/v DMSO or 0.001 N HCl. For the Caspase-Glo 3/7
®

 assay, a positive control of 0.15 

µM camptothecin (DNA topoisomerase I inhibitor) in DMSO was prepared and administered 2.5 

hours prior to each treatment interval [41-43].  
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MTT Cell Proliferation Assay 

A Cell Quanti-MTT Cell Proliferation Assay (BioAssay Systems) was used for a precise 

determination of equitoxic (LD50) concentrations over 12- and 24-h treatments. The MTT Cell 

Proliferation Assay uses the reduction of yellow tetrazolium MTT (3-(4, 5-dimethylthiazolyl-2)-

2, 5-diphenyltetrazolium bromide) by succinate dehydrogenase in metabolically active cells to 

create MTT formazan, a purple precipitate that can be used to spectrophotometrically quantitate 

metabolically active cell populations [44].  

Cells were treated at an initial density of 3.0 – 4.0 x 10
5
 cells/mL. After the appropriate 

incubation interval, triplicates of 18.75 µL reconstituted MTT reagent were added to 100 µL 

aliquots of treated and untreated cells into a clear bottom, 96-well plate. After a 4 hour 

incubation at 37
o
C and 5% CO2, cells were lysed with 125 µL solubilization buffer and shaken at 

120 RPM until the purple precipitate homogenized within the well (3-10 hours). Absorbances of 

the purple precipitate (570 nm) were measured using a SPECTRAmax M2 plate reader and 

SoftMax
®

 Pro Software (Molecular Devices).  

 

MTT Cell Proliferation LD50 Data Analysis 

Absorbance values were electronically transferred to Microsoft Excel 2011. Using a 

technique described previously by former Millard labmate Christopher Ng, I solved for the 

viable fraction (VF) of cells by taking the fraction of the blanked (RPMI media) average of an 

individual treatment divided by the blanked average of the positive control (0.15 µM 

camptothecin in DMSO), Equation 1. The fit viable fraction [P(c)] was calculated using Equation 

2, where “c” is concentration, parameter “a” is the LD50 concentration (mM), and parameter “b” 

is a scaling exponent. The residual sum of squares for a non-linear data set [=SUMXMY2(viable 
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fraction, fit viable fraction)] was used to determine the quality of fit between the two values in 

Excel. Using the Solver add-in for Excel, the residual sum of squares was minimized by 

changing the parameters (a > 0, b > 0). Only one parameter could be minimized for each set of 

100 iterations through Excel, so each parameter was changed until the “a” parameter stayed  

 constant up to the fourth significant digit. For each parameter and the residual sum of squares, 

an uncertainty value was calculated using a non-linear least squares macro, SolverAid, from 

Robert de Levi’s MacroBundle12 [45]. This macro “provides uncertainty estimates (standard 

deviations and the covariance matrix) for Solver-derived parameter values.” Accordingly, we 

were able to calculate the LD50 value and its uncertainty for each compound at each time interval.  

 

Ethidium Bromide Fluorescence Assay 

An ethidium bromide fluorescence assay [13] was used to assess the degree of cross-

linking for each compound at an equimolar concentration (1.0 µM) over a 24-h treatment (Figure 

1). Ethidium bromide is an intercalating agent that binds DNA, fluorescing more when bound to 

duplex DNA than single stranded DNA (ssDNA). This property can be used to assess the ability 

of our test compounds to cross-link duplex DNA. By measuring fluorescence before and after a 

rapid denature-renaturation cycle, we could determine how easily the DNA was able to reanneal. 

A greater abundance of cross-links will aid in the renaturing of complementary strands of DNA 

to their initial conformation, thereby increasing the proportion of duplex DNA to ssDNA. In 

other words, strands that can realign more completely will have more bases that match, 

permitting greater fluorescence of the ethidium bromide during a second fluorescence reading. 

VF = (Sample A570 – Mean Blank A570)/(Mean Control A570 – Mean Blank A570)  (1) 

P(c) = 1/(1+(c/a)
b
) (2) 

  



www.manaraa.com

! "+!

Genomic DNA was extracted from unsynchronized HL-60 cells using a GenCatch 

Genomic DNA Extraction Kit following the Blood protocol (Qiagen). The concentration of each 

DNA sample and the ratio of DNA:protein (A260/280) was measured using a Nanodrop-1000 

Spectrophotometer. Samples were eluted in Tris-EDTA (TE) buffer (pH 9.0) and diluted with TE 

to 20 ng DNA/µL. 100 µL of extracted genomic DNA and 100 µL ethidium bromide (10 µg/mL) 

solution containing 20 mM K2HPO4 and 0.4 mM EDTA (pH 12.0) were aliquoted into a flat-

bottom, black 96-well plate.  

Baseline fluorescence readings (RFU) were recorded for each well prior to a rapid 

denature-renaturation cycle. This cycle consisted of a 5-minute incubation at 100
o
C, then 3 

minutes in a -20
o
C freezer. A spectrum sweep for emission and excitation wavelength maxima 

was determined to be 525 nm for excitation and 580 nm for emission, matching literature values.  

 

Figure 2. Schematic for ethidium bromide cross-linking assay. Ethidium bromide was excited at 525 nm and 

fluorescence values were measured at 580 nm. 

Extract DNA from 
treated cells and 

stain with ethidium 
bromide 

Measure baseline 
fluorescence 

Rapid strand 
separation-rejoining 

Measure final 
fluorescence 

or 

Cross-linked 
(Higher fluorescence) 

Not cross-linked 
(Lower fluorescence) 

(High fluorescence) 

!

Relative % Cross-Linking = (EA/EB) – (CA/CB) 
                                               1 — (CA/CB) 

 
                             EA = Experimental fluorescence after denaturation 

                             EB = Experimental fluorescence before denaturation 
                             CA = Untreated fluorescence after denaturation 

                             CB = Untreated fluorescence before denaturation 
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Fluorescence readings were recorded before and after this heat-chill cycle. The relative 

percent of cross-linking was calculated using the equation for relative percent cross-linking in 

Figure 2 [13,44]. By taking the difference between the ratio of experimental to control 

fluorescences, and dividing that by a theoretically, fully cross-linked sample, we were able to 

calculate the cross-linking potential of each alkylating agent.  

 

Caspase-Glo
®
 3/7 Assay 

A Caspase-Glo-3/7 assay was used to determine relative levels of apoptosis based on the 

detection of caspases 3 and 7. This assay uses a proluminescent caspase-3/7 DEVD-

aminoluciferin substrate with a proprietary thermostable luciferase to generate a luminescent 

signal as active caspases 3 and 7 cleave the aminoluciferin from the substrate. Luciferase cleaves 

the aminoluciferin to create a luminescent signal that is proportional to the abundance of these 

active caspases, thus quantitating the apoptotic response.  

Twelve and 24-h treatments with each cross-linker at both 12- and 24-h LD50 

concentrations were compared with the positive control for apoptosis (0.15 µM camptothecin in 

1% v/v DMSO). Using a 1:1 ratio of caspase reagent to treated cells, treated cells and 

reconstituted caspase reagent were aliquot onto an opaque white, round-bottom 96-well plate. 

The plate was mixed at 200 RPM for 30 seconds, then left to incubate for 30 minutes at 37
o
C and 

5% CO2.  

Relative luminescent units (RLU) were measured using a SPECTRAmax M2 plate reader 

and SoftMax
®

 Pro Software (Molecular Devices). The mean luminescent signal of each 

condition was blanked with the mean negative control (RPMI 1640-based cell-free media). 

Relative levels of apoptosis were determined by taking the fraction of the blanked-adjusted 
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average of an individual treatment divided by the blanked-adjusted average of the positive 

control. Vehicle controls of 1% v/v DMSO and/or 1% v/v 0.1 N HCl were also assayed.  

Standard error mean (S.E.M; bars displayed in Figure 1) were calculated by dividing the 

standard deviation by the square root of the sample size. Significance between treatment and 

vehicle controls were determined using a student’s t-test for statistical analysis of the variance 

between two means. 
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Results 

Cytotoxic Potential 

Cells react differently to bifunctional alkylating agents based on their position in the cell 

cycle [41], cell line and type, length of treatment (time), and dosing concentration [46]. 

Unsynchronized HL-60 cells were treated with varying concentrations of bifunctional alkylating 

agents. Based on the concentration-dependent response, we were able to establish the median 

lethal dose (LD50) for each treatment condition.  

The cytotoxicity of each 

compound is inversely proportional to 

its LD50 value; more potent 

compounds require a lower 

concentration to eliminate half the 

fraction of viable cells. In the case of 

HN2, the LD50 concentration at 12-hours was approximately 550-fold less than DEB and 

approximately 2,000-fold less than ECH, indicating a potency ranking of HN2 >> DEB > ECH 

(Table 2). After 24-hours, the LD50 of DEB was markedly lower than HN2 and approximately 

10-12 fold greater than ECH (DEB > HN2 > ECH; Table 2). 

Of note, the LD50 values for DEB and ECH decreased (13.0 and 2.8-fold, respectively) 

between the 12- and 24-h treatments, suggesting that they become slightly more toxic over time. 

However, the LD50 value for HN2 increased 50-fold over the same time interval, suggesting that 

cytotoxicity, or number of metabolically active cells, decreases over time. 

 

Table 2. LD50 values and ± S.E.M. (mM) for HL-60 cells treated 

with bifunctional alkylating agents over 12- and 24-h periods. 

Subscripts indicate uncertainty of the uncertainty value, n = 3. 

X-Linker 12 Hour 24 Hour 

HN2 0.000410 ± 0.0000552 0.0217 ± 0.00263 

DEB 0.226 ± 0.0110 0.0174 ± 0.00085 

ECH 0.492 ± 0.0354 0.175 ± 0.0163 

   

12-h HN2 >> DEB > ECH 

24-h  DEB > HN2 > ECH 
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Cross-Linking Potential 

 It has been proposed previously that a bifunctional alkylating agent’s ability to cross-link 

DNA is the cause of its cytotoxicity [47]. The ethidium bromide fluorescence assay was used to 

understand how well each compound is able to form cross-links with DNA. Genomic DNA was 

extracted from unsynchronized treated and untreated cells then stained with ethidium bromide. 

Because ethidium bromide fluoresces when bound to dsDNA versus ssDNA, comparison of 

fluorescences before and after a rapid denaturation-renaturation cycle could be used to estimate 

the relative number of cross-links in a given condition when compared to an untreated control.  

 Due to time constraints and complications in the protocol, we were only able to obtain 

data for 24-h treatments with 1.0 µM of each cross-linker. DEB (37.1%) was the most potent 

cross-linker followed by ECH (14.0%), then HN2 (2.6%), suggesting a cross-linking order of 

DEB > ECH > HN2. While this does not characterize the compounds at equitoxic (LD50) 

 
Figure 3. Ethidium bromide fluorescence assay for a 24-h treatment with 1.0 µM of each compound indicates the 

cross-linking strengths: DEB > ECH > HN2. The formation of covalent, interstrand cross-links prevents DNA from 

separating, allowing it to reanneal easier and fluoresce more after a rapid denature-renaturation cycle, n = 3. 
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concentrations, it allows us to speculate these compounds’ abilities to enter the cell and react 

with the DNA over a longer treatment length. 

 

Apoptotic Potential  

 Apoptotic potentials for each compound were assayed across four conditions where the 

treatment time (12- and 24-h) and LD50 concentration at each time were varied (Figure 4). 

Compared against vehicle controls, cells treated with DEB showed significant levels of apoptosis 

induced for three test conditions: both 12- and 24-h LD50 concentrations (0.226 mM and 0.0174 

mM) during a 24-h treatment (p < 0.00001 and p < 0.00001) and during a 12-h treatment with 

the 24-h LD50 (p < 0.00001). Treatment at these three conditions caused levels of apoptosis that 

differed significantly from each other: 24-h LD50 treated for 24-h > 12-h LD50 treated for 12-h > 

24-h LD50 treated for 12-h (p < 0.00005 for each combination).  

Treatment with ECH caused significant levels of apoptosis for two test conditions: 24-h 

LD50 for the 12- and 24-h treatments (0.175 mM; p < 0.05 and p < 0.01), when compared against 

the vehicle control. Each treatment differed significantly from the other as well, with the 24-h 

treatment inducing a greater apoptotic response than the 12-h treatment (p < 0.0005).  

Treatment with HN2, using the 12-h LD50 concentration (0.000410 mM) over a 24-h 

interval, induced significant levels of apoptosis (p < 0.005) when compared against its vehicle 

control. However, the magnitude of this apoptotic response was very low. 
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Figure 4. Relative levels of apoptosis induced by LD50 concentrations of bifunctional alkylating agents after (a) 12 and (b) and 

24-hour treatments. Significant levels of apoptosis were induced for three treatments with DEB, two with ECH, and one with 

HN2. Asterisks indicate significance (* = p < 0.005, ** = p < 0.00001) between luminescence fractions of treatment conditions 

and their respective vehicle controls, n = 3. 
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Discussion 

The ability for our test compounds to enter cells and form interstrand cross-links is 

believed to be the source of their cytotoxicity. These compounds are highly reactive within the 

cells, though we focused specifically on their ability to interact with genomic DNA. Accordingly, 

we sought to characterize their cytotoxicity, specifically their ability to induce apoptosis, at 

equitoxic (LD50) concentrations with respect to their ability to form these interstrand cross-links.  

Cytotoxicity of Bifunctional Alkylating Agents  

Equitoxic concentrations of unsynchronized HL-60 cells were determined based on the 

median lethal dose determined using the MTT assay. During the 12-h treatment, HN2 was 

markedly more cytotoxic than either DEB (550-fold) or ECH (2,000-fold); however, DEB was 

more cytotoxic than HN2 during the 24-h treatment and only slightly more so than ECH.  

The increase in LD50 concentration for HN2 was surprising. Higher levels of metabolism 

were detected from cells treated with HN2 over a 24-h treatment than would be theoretically 

possible considering the 12-h LD50 concentration and the 24-36 hour doubling time of HL-60 

cells. It is important to recognize that the MTT assay measures the metabolic activity; it does not 

directly quantitate cell death. Cells that contain cross-linked DNA may be less metabolically 

active than healthy cells, but they necessarily dead. This discrepancy is noteworthy, since the 

LD50 concentration for HN2 increased 50-fold over the twelve hours between assaying for 

cytotoxicity, while the LD50 for ECH and DEB decreased (~3 and 12-fold, respectively). This 

trend may be due, in part, to the stability of these compounds once in aqueous solution. HN2 is 

reported to have a very short half-life in aqueous solution, dependent upon the nature of the 

reactant [48] and the medium in which it is solvated [49]. A theoretical minimum half-life based 

on the time it takes HN2 to cyclize into the ethylene imonium ion, the reactive species in HN2’s 
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nucleophilic reactions, is approximately 90 seconds [50]. One source suggests 0.2 mM HN2 has 

a half-life of approximately 30 minutes [50]. In comparison, DEB and ECH have reported half-

lives of 31 ± 4 [51] and 213 [29] hours, respectively. The substantially longer half-life of these 

compounds may increase their potency over prolonged treatment lengths and slow down the rate 

of replication. Cells exposed to a compound that breaks down quickly will be exposed to it for 

less time, allowing them a chance to repair cross-links using DNA excision repair enzymes. This 

can allow for more potent and targeted treatments while decreasing the chance of collateral 

damage to neighboring healthy tissues. However, the ability for treated cells to recover quickly 

after treatment raises the chances of developing secondary or more resilient cancers [52].  

 

Cross-Linking at Equimolar Concentrations Suggests DEB > ECH > HN2 

The cross-linking ability of these compounds was measured using the ethidium bromide 

fluorescence assay using 1.0 µM of each compound over a 24-h treatment. Data from the 

ethidium bromide fluorescence assay indicate a positive correlation between cross-links formed 

and trends in cytotoxicity from DEB and ECH in the context of compound half-life. These cross-

linking results indicate DEB > ECH > HN2. These results differ from earlier in vitro studies 

conducted within the Millard lab, which suggest HN2 is a more potent cross-linker than DEB 

[53], and that DEB is a more potent cross-linker than ECH [31].  

The potency of these cross-linkers in vitro is similar for to their cytotoxicity determined 

for the 12-h treatment, but not 24-h treatment. This discrepancy is likely due to the compounds’ 

half-lives. Despite ECH’s longer half-life, its ability to form cross-links is much less than both 

DEB and HN2. Therefore, its more concentrated presence in solution over a 24-h is not enough 

to induce more cross-links than DEB.  
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While HN2 is the most reactive cross-linker in vitro, it is not necessarily the best cross-

linker. HN2’s ability to form cross-links in vitro is less biologically relevant than its half-life 

when used to treat live cells. Since its half-life is so short, cross-links will only form for a certain 

period of time before the compound’s presence in solution in negligible. The rate of cross-link 

repair in cells will eventually overcome that of the decreasing rate of cross-link formation. This 

hypothesis may also help explain why the potency of HN2 decreases over time, while the 

potency of the epoxides increases. The instability of HN2 over longer periods of time may also 

help to explain why our in vivo cross-linking results (DEB > ECH > HN2) differ from our in 

vitro results (HN2 > DEB > ECH).  

Another possible reason for the disparity between HN2’s in vivo and vitro cross-linking 

potentials are the compounds’ ability to permeate the cells and interact with the DNA. Previous 

studies solvated DEB and ECH in DMSO and HN2 in an acidic aqueous solution. The difference 

in solvent may ultimately affect the permeability of these compounds into the cell and nucleus, 

which could affect our results and explain the increased cross-linking observed with DEB and 

ECH. However, due to time constraints and complications with the ethidium bromide cross-

linking protocol, we were unable to test this hypothesis and establish data for equitoxic 

concentrations over the different time points. These aspects of bifunctional alkylating agent 

biochemistry may be biologically relevant aspects to consider further.  

 

High Apoptotic Potential of DEB 

The induction of apoptosis is important in treating tumors and cancers for two reasons. 

First, the increased replication rate of a cancer cell means that damage caused that may interrupt 

cellular replication will slow or stop the rate of proliferation, which provides the immune system 
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an opportunity to destroy the cancerous cells. Second, triggering apoptosis is a more targeted 

approach to chemotherapy. Cells with damage induced by chemotherapeutics will be stopped at 

one of the checkpoints in replication, which can mean it is more likely to trigger an apoptotic 

response if it is stopped for too long. Therefore, cells that replicate abnormally fast are more 

likely to be selected against than cells that undergo fewer replications in a given timeframe. In 

contrast, necrosis is a form of cell death that causes unregulated cell death and can affect both 

healthy and cancerous cells. 

A cell’s ability to undergo apoptosis is largely dependent on its type, length and 

concentration of treatment, and its progression through the cell cycle [46]. Previous studies 

suggest that DEB is capable of triggering apoptosis [54-58], ECH has an overwhelming ability to 

induce necrosis [59], and HN2 is able to stimulate both necrosis and apoptosis [48], depending 

on an apoptotic window, as determined by the treatment concentration (lower concentrations 

induce apoptosis) and length (shorter treatments of 1-h induce apoptosis) [60]. By assaying for 

the activity of active caspases 3 and 7, two hallmark proteases of apoptosis, we were able to 

determine how well these compounds induced apoptosis at specified equitoxic concentrations. 

Thus, we demonstrated that while there is no direct correlation between cross-linking and 

compound-induced cytotoxicity (apoptosis), a relationship might exist if the stability of 

unreacted cross-linkers is taken into account. 

DEB showed the most significant levels of apoptosis over both 12- and 24-hour 

treatments and the greatest number of conditions in which apoptosis was induced (Figure 4). 

With the exception of the 12-h LD50 during a 12-h treatment, DEB showed very significant 

levels of apoptosis (24-h LD50 after 24-h treatment > 24-h LD50 after 12-h treatment > 12-h LD50 

after 24-h treatment > 12-h LD50 after 12-h treatment = vehicle control). DEB is largely believed 
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to be the active form of the pro-drug treosulfan, which is used to treat advanced stages of ovarian 

cancer. Studies on treosulfan in human acute myeloid leukemia cells, including HL-60, indicate 

that the physical biological features associated with apoptosis (e.g. membrane blebbing) are 

clearly present in cells treated with treosulfan after 72 hours, further highlighting the ability of 

DEB to induce apoptosis [56]. It is likely that we observed apoptosis prior to this time point 

because DEB is the pro-form of treosulfan. In order for treosulfan to become active and form 

cross-links as DEB, it must be broken down. On the contrary, since DEB is already the active 

form and can react immediately it should be able to begin forming cross-links sooner. 

Cells treated with the lower, 24-h ECH LD50 concentration induced apoptosis over both 

time intervals. While this challenges the primarily necrotic response reported in previous studies 

[59], it does support previous work that lower concentrations of bifunctional alkylating agents 

can induce apoptosis [60]. Finally, cells treated with the 12-h LD50 concentration of HN2 for 12-

h also induced statistically significant levels of apoptosis when compared to the vehicle control. 

However, these levels of apoptosis were very small and may have little biological relevance.  

 

DEB Shows Strong Relationship between Cross-Linking and Cytotoxicity/Apoptotic Response 

The half-life of a compound must be known to understand how long cross-linking can 

occur after a cell’s initial exposure. Therefore, we propose a relationship between cross-linking 

and cytotoxicity (induction of apoptosis) for the three test bifunctional alkylating agents over 

longer treatment lengths. 

DEB and ECH each have half-lives that are greater than the length of treatment. Of the 

initial treatment concentration over 12- and 24-h, DEB (76.5% and 58.5%) and ECH (96.2% and 

92.5%) were still largely present in the treatment wells. For these same time intervals, HN2 (6.0 
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x 10
-6 

% and 3.6 x 10
-13 

%) decayed and had a negligible presence in the treatment wells. Cells 

exposed to DEB and ECH were able to continue to form cross-links with genomic DNA long 

after HN2 was broken down and HN2-exposed cells had begun to repair these cross-links. 

Therefore, while HN2 may be more cytotoxic in shorter doses, DEB and ECH have a prolonged 

effect that contributes to their ability to form cross-links, ultimately inducing cell death and 

apoptosis. This property of the epoxides may cause collateral damage in neighboring tissues, 

representing a clear disadvantage to treatment with such compounds. 

Of all three of the test compounds, DEB showed the strongest support for the hypothesis 

that cross-linking potential is correlated with the induction of apoptosis. Results from ECH also 

support this hypothesis, since cross-links form over a 24-h period and low, yet significant, levels 

of apoptosis were induced. Finally, despite HN2’s high potency during shorter treatments, it was 

unable to continually cross-link DNA, likely a result of a theoretically lower presence after a 

certain period of time. HN2’s degradation provides a window of opportunity for the 

metabolically viable cells to repair cross-linking and continue to divide after treatment. It is 

possible that HN2’s cross-linking and apoptotic potentials may be much greater than DEB’s if 

assays were performed much closer to the time of treatment when a substantial concentration of 

reactive HN2 was present. However, the short half-life of HN2 limits the window of exposure, 

which may be an advantage relative to other compounds when it comes to reducing collateral 

damage in healthy cells nearby but disadvantage because selection favors resiliency to treatment.  
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Conclusion 

In this study, we suggest that a bifunctional alkylating agent’s potential to cross-link 

duplex DNA and to induce cell death by triggering apoptosis are related when considering a 

compound’s stability in solution. The cross-linking potential of these three compounds at 

equimolar concentrations suggests that DEB was the most effective, followed by ECH, then HN2. 

The ability of these compounds to cross-link was largely dependent on their ability to permeate 

the cell and bind DNA, as well as their stability in solution. Therefore, despite HN2’s potency 

during a shorter 12-h treatment, its measured decrease in cytotoxicity after 24-h of treatment and 

lower levels of apoptotic response may be largely due to its short half-life.  

On the contrary, DEB and ECH, each with half-lives longer than the 24-h treatment 

length, showed greater cross-linking potentials than HN2. Their ability to form cross-links also 

correlated with their apoptotic potential. DEB was able to induce highly significant levels of 

apoptosis after 24-h treatment (p < 0.00001) and for 12-h of treatment using the higher dose (p < 

0.0005). Similarly, ECH was able to induce apoptosis at the 24-h LD50 concentration during 12- 

and 24-h treatments (0.175 mM; p < 0.05 and p < 0.01). While the concentration of ECH at the 

assaying time, compared to the initial concentration, was greater than that of DEB for both time 

points, the ability for DEB to induce cell death and apoptosis were greater. This, and the 

reactivity of DEB over ECH, may explain why the longer half-life of ECH did not correlate with 

its ability to form more cross-links than DEB. 

HN2 had the lowest cross-linking potential at equimolar concentrations, despite inducing 

nearly as strong a cytotoxic response as DEB after 24-h of exposure. After 24-h, cells treated 

with HN2 did not contain significant levels of cross-linking. HN2 was still able to elicit a 
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significant apoptotic signal during the 24-h treatment with the 24-h LD50 (p < 0.005), though 

whether this is biologically relevant is unclear.  

While preliminary work has been done to understand the cross-linking potential of these 

compounds at 24-h under equimolar concentrations, future studies should investigate the cross-

linking potential at LD50 concentrations and use methods to directly quantitate cell death. 

Additionally, studies should also characterize the half-lives of these compounds in cell media to 

better understand how well they are able to affect cells during treatment. 
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